US009304847B2

a2 United States Patent

Roberson et al.

US 9,304,847 B2
Apr. §5,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

AUTOMATIC PROMPT DETECTION FOR
UNIVERSAL DEVICE SUPPORT

Applicant: RIVERBED TECHNOLOGY, INC.,
San Francisco, CA (US)

Inventors: James Roberson, Apex, NC (US);
Krishnan Sivaramakrishna Iyer, Cary,
NC (US)

Assignee: RIVERBED TECHNOLOGY, INC.,
San Francisco, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 162 days.

Appl. No.: 14/267,349

Filed: May 1, 2014

Prior Publication Data
US 2014/0331093 Al Nov. 6, 2014

Related U.S. Application Data

Provisional application No. 61/818,951, filed on May
3,2013.

Int. Cl1.

GO6F 11/00 (2006.01)

GO6r 1107 (2006.01)

HO4L 12/24 (2006.01)

GO6F 1122 (2006.01)

GO6F 11263 (2006.01)

GO6F 9/455 (2006.01)

U.S. CL

CPC ... GO6F 11/0787 (2013.01); GO6F 11/2252

(2013.01); GOG6F 11/263 (2013.01); HO4L
41/06 (2013.01); HO4L 41/0876 (2013.01);
GO6F 9/45512 (2013.01); HO4L 41/0213
(2013.01)
Field of Classification Search
None
See application file for complete search history.

Unknown
tate

Send CR &
record new
response

IfDiff # 0

o
910
,,,,, y
Send charaaerJ
plus CR & record

response

responses?

1 Diff # 0

Determine i
dynamic prompt !‘—W
Y Diff=0

914
ey

...............
920
[Derive regular Determine
T expression statc prompt. |
H

(56) References Cited

U.S. PATENT DOCUMENTS

6,073,164 A * 6/2000 Zey ..ccccovviriieins HO41. 41/22
370/218
7,627,833 B2* 12/2009 McKnight GOGF 9/45512
715/780
2004/0179683 Al* 9/2004 vonBehren GOGF 21/53
380/44
2004/0199922 Al* 10/2004 Krutsch GOGF 17/30557
719/310

2007/0056031 Al* 3/2007 Sivaramakrishna
Iyer i HO4L 12/24
726/12
2012/0151563 Al* 6/2012 Bolik ..c.ccccevnveenee HO4L 9/0891
726/6
2013/0019154 Al* 1/2013 Wolfston, Jr. GO06Q 10/00
715/221

(Continued)

FOREIGN PATENT DOCUMENTS

JP 02030245 A * 1/1990 HO4L 9/32

Primary Examiner — Gabriel Chu
(74) Attorney, Agent, or Firm — Park, Vaughan, Fleming &
Dowler LLP; Laxman Sahasrabuddhe

(57) ABSTRACT

Embodiments provide systems, methods, and computer pro-
gram products for network management application to auto-
matically determine a session prompt for a network device
and perform error handling. After logging in to a network
device, the network management application records the first
session prompt response. The network management applica-
tion sends a series of empty carriage returns and random
characters and records the session prompt responses. The
network management application compares the responses
and determines whether the prompt is a static or a dynamic
prompt based on the results. The network management appli-
cation elicits error responses from the network device by
sending additional random characters and records the results
in an error handling dictionary. The error handling dictionary
is used later when running user-provided commands,
enabling a determination of whether a command executed
successfully.

20 Claims, 11 Drawing Sheets

902

| Send character
| plus CR & record

4;9;\:93 batwsen

i

US 9,304,847 B2

Page 2
(56) References Cited 2014/0331093 Al1* 11/2014 Roberson GOG6F 11/0787
714/48
U.S. PATENT DOCUMENTS
2013/0019155 Al* 1/2013 Wolfston, Jr. G06Q 30/02

715/221 * cited by examiner

U.S. Patent Apr. 5, 2016 Sheet 1 of 11 US 9,304,847 B2

100

110 }

g\ '{/

;o

118d...~y N o118
"." '\\
RN Yo,
\ ..v*"‘“‘\\,\\ ;;“‘V \ {f.—» \\
102 |#—r—s{ 104 Jppl 106 jerenl 108
O { t% fi { \\ /.f, ':\ \\\ .“f(
Y \\ ’.«*‘ % N iy S
) —) P
118a 1{8b 118¢c

U.S. Patent Apr. 5, 2016 Sheet 2 of 11 US 9,304,847 B2

E]
2
S

|

202
2

Y

s

User Access Verification

71 Username: jroberson
FPassword:

UiPi=en
M Passord:

2

G\G.f' TP ‘

Lo Y Unknown command or computsr name, or unable to find computer address
210~ Pis
212 .~ % Type “show ?" for a list of subcommands
T P1#
214« | P1#
WP

U.S. Patent Apr. 5, 2016 Sheet 3 of 11 US 9,304,847 B2

(]
jon]

e 033
o
[N

et

304\: riogin: kiyer
U password:

o

308
\3(‘%" *CARY-EX-ACCOTT #
NTCARY-EX-ACCOT 8

S iSyntax error at token .

Available commands:
<cre clear configure create delste disable download enable exit history

3104
\} logout mplsping mplstrace mrinfo mirace nslookug ping quit reboot
f restart rilookup run save show telnet racercute unconfigure upload
\ uge vpisping vplstrace xping
312

TV CARY-EX-ACCOT2 #

U.S. Patent Apr. 5, 2016 Sheet 4 of 11 US 9,304,847 B2

Server 400
Pracessor 402 Transceiver 404
Storage device 400 Memory 408
Prompt analysis module 410 Error analysis module 412

Sheet 5 of 11 US 9,304,847 B2

U.S. Patent Apr. 5,2016
500
506
\\} Connsct to begin Ssssion .|
Authenticate o
; =510
a8 Determine Unknown Promsst._ > ! Network
Server 502 . . .
Determine Unknown Error Handling ~i device 504
5 514~
512 Run Commands to Collect Data .
End Connection Session o
,,,,,,,,,,,,,,,,,,,,,,,, y ¢ 4
\3'
516

U.S. Patent Apr. 5, 2016 Sheet 6 of 11 US 9,304,847 B2

(®)]
(a»]
(aw]

Prompt for Username

Return Username

Prompt for Password

-

Return Password

606

U.S. Patent Apr. 5, 2016 Sheet 7 of 11 US 9,304,847 B2

00

702
Connect o network device S
¥
704
Authenticate session .
706
Measure Round Trip Time et
¥
708
Determine prompt P
¥
- 710
Determine error handling o

FIG. 7

U.S. Patent Apr. 5, 2016 Sheet 8 of 11 US 9,304,847 B2

800

802
Record previous responss
: 804
Send carriage retum (CRy and record . |
response
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ¥
806

Send character and record response

¥

808
Compare recorded responses o
¥
810
Determine if prompt is static or dynamic
¥ ‘
, . - 812
Derive regular expression based on s

prompt lype and characier response

FIG. 8

U.S. Patent Apr. 5, 2016 Sheet 9 of 11 US 9,304,847 B2
— 900
/ Unknown o~ 802
\ State
\\ ™™
%’
Record previous | .~ 904
response
Sand CR &
record new #r 906
response
€% 0 908
! o Dlﬁerences between e
“‘\ ? o
S responses? jf_, 1 £Diff= 0
" \\\\\:\Ffﬁ x..-" s
910
E fkm“} ¥
Send character | Send character
plus CR & record | plus CR & record
response response ~.-916
912 ¥
E\ .f‘f.“h ‘\'\\.
Y I ,,f ...918
Determine If Diff # 0 .« D|fferences betvveen\\
dynamic prompt i~ \ responses? f’"
\\ ‘f‘""‘f
~¢If Diff = 0
914 5
G
3 o
| Y 920
De”Ve regular Determine

k4

expression

static prompt

U.S. Patent Apr. 5, 2016 Sheet 10 of 11 US 9,304,847 B2

1002
- Prompt X
i&\ Determined

RS

R

i

Mt e
A e TVVUVSURRNCES g

=

) 1004
Send special chars |

or commands to
alicit error
responses

Save responses

¥ 1008
‘u-‘f

o &
™ \\w\
e

End of prompt determination \
N and error handling phases S

e an
i

S "
o i
i, i
A~ aw

s SN

FiG. 10

U.S. Patent Apr. 5, 2016 Sheet 11 of 11 US 9,304,847 B2

1100
T Y\ Processor 1104
\ Main Memory 1108
Secondary Memory 1108
Hard Disk Drive
Communication 1110
. Infrastructure
1102 F -
v ' Removable Storage | | | Sr\;sgozaslnﬁt
Drive 1112 1‘?16
3 Remaovable
Interface 1114 +—+—-—- Storage Unit
1118
b Communication ! 5
e i Interface 1120 Hy— I . d
" Communications Path 1122

FiG. 11

US 9,304,847 B2

1
AUTOMATIC PROMPT DETECTION FOR
UNIVERSAL DEVICE SUPPORT

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of U.S. Provi-
sional Patent Application No. 61/818,951, filed on May 3,
2013, which is incorporated herein by reference in its entirety.

BACKGROUND

1. Technical Field

The present disclosure relates generally to network man-
agement, and particularly to automatically determining a
device prompt for an unknown network device for recogniz-
ing when the network device is ready to receive input com-
mands.

2. Background Art

Networks are composed of a combination of routers,
switches, firewalls, load balancers, WAN accelerators, and
other networking devices. Network management includes
accessing some or all of these network devices in order to
determine their configuration, modify their configuration,
obtain diagnostic information, and monitor performance.
These devices are primarily configured, managed and main-
tained by network administrators through a command line
interface (CLI). When network management applications
attempt to interact with the CLI of a network device, the
network management applications also need to know when
the CL1is ready to receive input commands. Because network
management applications have no visual processing equal to
that of the administrator, there is no clear way of understand-
ing when the network device is ready to receive input com-
mands.

Further, the ability to log into remote network devices and
identify when the CLI is ready to receive input commands is
a difficult problem because these network devices are manu-
factured by a variety of vendors operating under a variety of
locales. Determining whether the CLI is ready requires the
network management application to detect an almost infinite
number of prompts. These prompts can range from special
characters to any combination of letters and other language-
based characters. Programming a network management
application to detect and respond to each prompt among a vast
and dynamic set of prompts would require continuous main-
tenance, including excessive research and development hours
and cost.

BRIEF DESCRIPTION OF THE
DRAWINGS/FIGURES

The accompanying drawings, which are incorporated
herein and form a part of the specification, illustrate the
present disclosure and, together with the description, further
serve to explain the principles of the disclosure and to enable
a person skilled in the pertinent art to make and use the
disclosure.

FIG. 1 illustrates an exemplary network environment
according to an embodiment.

FIG. 2 illustrates an exemplary static prompt of a command
line interface (CLI) for a network device according to an
embodiment.

FIG. 3 illustrates an exemplary dynamic prompt of a CLI
for a network device according to an embodiment.

FIG. 4 illustrates an exemplary server apparatus according
to an embodiment.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 illustrates an exemplary network management ses-
sion between a server apparatus and a network device accord-
ing to an embodiment.

FIG. 6 illustrates an exemplary command prompt flow
according to an embodiment.

FIG. 7 illustrates an exemplary process for automatic
prompt detection according to an embodiment.

FIG. 8 illustrates an exemplary process for determining a
session prompt according to an embodiment.

FIG. 9 illustrates an exemplary process for determining a
session prompt according to an embodiment.

FIG. 10 illustrates an exemplary process for error handling
according to an embodiment.

FIG. 11 illustrates an exemplary computer system that can
be used to implement aspects of embodiments.

The present disclosure will be described with reference to
the accompanying drawings. Generally, the drawing in which
an element first appears is typically indicated by the leftmost
digit(s) in the corresponding reference number.

DETAILED DESCRIPTION OF EMBODIMENTS

Example Network Environment

FIG. 1 illustrates an example network environment 100
according to an embodiment of the present disclosure.
Example network environment 100 is provided for the pur-
pose of illustration and is not limiting of embodiments of the
present disclosure. As shown in FIG. 1, example network
environment 100 includes computing device 102 and a plu-
rality of network nodes 104, 106, 108, and 110. A “node” may
refer to layer 3 devices such as Layer-3 (L-3) routers or
switches. In some embodiments, ‘“node” may also refer to
other types of network elements including switches, bridges,
firewalls, load balancers, virtual routers, servers, terminals,
hosts, etc. As would be understood by a person skilled in the
relevant art(s) based on the teachings herein, example net-
work environment 100 may include more or fewer network
nodes and/or elements than shown in FIG. 1.

As will be discussed in more detail with respect to the
various embodiments and figures below, embodiments of the
present disclosure enable a network management application,
for example implemented by computing device 102, to auto-
matically access the network nodes 104-110 and determine
the prompt of a CLI without user intervention as well as
generate and use an error handling dictionary.

In an embodiment, computing device 102 is a host device
which is in communication with the network nodes 104-110.
Communication between two host devices, for example
including host device 102 and another host device at the other
end of the network (not shown) may be enabled by nodes
104-110. In an embodiment, a communication path among
the computing device 102 and the network nodes 104-110
includes a plurality of links 118a-e as shown in FIG. 1. Each
link 118a-¢ may include one or more data links and may
include further network nodes. The links 118a-¢ may be, for
example, coaxial and/or fiber optic, to name just a few
examples, of a physical layer network. The physical layer
network may be, for example, Synchronous Optical Net-
working (SONET)/Synchronous Digital Hierarchy (SDH),
Ethernet, Optical Transport Network (OTN), Wavelength
Division Multiplexing (WDM), and Digital Subscriber Line
(DSL). These are by way of example only; other physical
layer (Layer-1 or “L-1”) networks are also within the scope of
the present application, as would be understood by a person
skilled in the relevant art(s).

In the example of FIG. 1, nodes 104-110 may be L-3
devices and/or Layer-2 (L-2) devices (e.g., switches or

US 9,304,847 B2

3

bridges that can be configured to receive packets or frames on
one port (or interface) and selectively forward the packets or
frames onto another port), although other combinations are
possible as will be recognized by those skilled in the relevant
art(s).

A network management application, for example imple-
mented by computing device 102, may have control of a local
area network that includes computing device 102 and nodes
104-110. As will be recognized by those skilled in the relevant
art(s), control may be over more or fewer than just nodes
104-110. As used herein, “network administrator” refers to
any entity, such as a person or program, that can access,
modify, or replace configuration files for a given node and
perform other control functions with respect to a computer
network. A “network management application” is an example
of a “network administrator” program entity.

Commands sent by a network administrator are similar to
conversations, which have a beginning and an end—the net-
work administrator sends a command, the network device
sends the response to the interface, such as a display, and the
conversation ends when the network device has stopped send-
ing output data. Visually, the appearance of a session prompt
at the CLI indicates that the conversation has ended and that
the network device is ready to receive additional commands.
While network administrator persons who log into network
devices may rely on visual sight to recognize when the net-
work device is ready to receive input commands at the CLI,
the network management application does not rely on the
same kind of visual processing.

Session prompts may be static or dynamic, as demon-
strated in FIGS. 2 and 3. FIG. 2 illustrates an example of a
static prompt 200 for a network device according to an
embodiment. The static prompt 200 includes CLI 202. Lines
204 demonstrate the act of entering a username and password
to log into a network device, such as any of nodes 104-110 of
FIG. 1. There are several different approaches for logging into
network devices. For example, an approach for automatically
logging into network devices, such as by a network manage-
ment application, is described in U.S. Pat. No. 8,230,491,
which is incorporated herein by reference in its entirety.

After successtully logging in at the authentication prompt
lines 204, the

CLI 202 displays the first session prompt 206. In FIG. 2,
the first session prompt 206 is P1#. As indicated above, net-
work devices may be manufactured by a variety of vendors
operating under a variety of locales, and each vendor may
provide different prompts ranging from special characters to
any combination of letters and other language-based charac-
ters. In an embodiment, the characters may be based on any
one or more of several languages. The static prompt 200 of
FIG. 2 is just one example from a variety of vendor-deter-
mined static prompts, as will be recognized by those skilled in
the relevant art(s).

In the exemplary CLI 202, the period character () is
entered at the first session prompt 206, followed by a carriage
return (e.g., “enter”). In response, the network device outputs
to the CLI 202 error message 208, indicating that the charac-
ter entered at the first session prompt 206 was not a valid
command.

After the error message 208, the network device outputs to
the CLI 202 a second session prompt 210, after which the
character “s” is entered at the second session prompt 210
followed by a carriage return. In response, the network device
outputs to the CLI 202 another error message 212. Although
the error message 212 is different from the error message 208,
both serve to indicate that the character entered at the respec-
tive session prompt was not a valid command.

10

15

20

25

30

35

40

45

50

55

60

65

4

The network device then outputs to the CLI 202 session
prompts 214. At the first of the session prompts 214, a car-
riage return is entered which results in the next of the session
prompts 214. Each time a carriage return is entered, the net-
work device outputs to the CLI 202 another session prompt.
As can be seen from FIG. 2, after each carriage return and/or
invalid character, the session prompts 206, 210, and 214 are
the same. The session prompts in static prompts do not
change, regardless of what commands are issued to the net-
work device

FIG. 3 illustrates an example of a dynamic prompt 300 for
a network device according to an embodiment. The dynamic
prompt 300 includes CLI 302. Lines 304 demonstrate the act
of entering a username and password to log into a network
device, such as any of nodes 104-110 of FIG. 1, for example
as discussed above with respect to FIG. 2.

After successtfully logging in at the authentication prompt
lines 304, the CLI 302 displays the first session prompt 306.
In FIG. 3, the first session prompt 306 is *CARY-EX-ACCO1:
1#. This dynamic prompt 300 is just one example from a
variety of vendor-determined dynamic prompts, as will be
recognized by those skilled in the relevant art(s).

In the exemplary CLI 302, the carriage return is entered at
the first session prompt 306. In response, the network device
outputs to the CLI 302 the second session prompt 308. After
the second session prompt 308 is displayed, the period char-
acter ““.” is entered, followed by a carriage return. In response,
the network device outputs to the CLI 302 error message 310,
indicating that the character entered at the second session
prompt 308 was not a valid command.

Once the error message 310 has been displayed, the net-
work device outputs to the CLI 302 the third session prompt
312. In FIG. 3, the third session prompt 312 is *CARY-EX-
ACCO01:2#. The third session prompt 312 is different when
compared against the first session prompt 306 and the second
session prompt 308. This demonstrates the nature of dynamic
session prompts, which change after each command that is
issued to the network device. In the example of FIG. 3, the last
number of the session prompt, which incremented to 2 in the
third session prompt 312, may increment with each succes-
sive command, for example by 1 every time. As will be
recognized by those skilled in the relevant art(s), the session
prompt may be incremented by a different value or by a
different character change pattern.

In FIG. 3, there is no difference between first and second
session prompts 306 and 308 because a command was not
sent to the network device, but rather only a carriage return
which is not recognized as a command by the network device.
Alternatively, a dynamic prompt may also change the session
prompt after each carriage return as well, in addition to the
change after each command.

FIG. 4 illustrates an exemplary server 400 according to an
embodiment.

The server 400 may be used, for example, to host a network
management application to access one or more of the network
devices 104-110. Although described as a server, those skilled
in the relevant art(s) will recognize that other computing
devices may also be used to access one or more network
devices. The server 400 may include one or more processors
402. The one or more processors 402 may each include one or
more processing cores, capable of performing parallel or
sequential operations. Server 400 may also include a trans-
ceiver 404, for example an Ethernet connection, WiFi con-
nection, or other connection capable of enabling the server
400 to transmit and receive data to/from external sources. The
server 400 may include a storage device 406, for example a
hard drive, flash drive, or other types of long-term storage as

US 9,304,847 B2

5

will be understood by persons skilled in the relevant art(s).
The server may also include memory 408, such as random
access memory (RAM).

When the server 400 operates to access and manage one or
more network devices, the server 400 may determine a type of
session prompt of the network device’s CLI (e.g., either static
or dynamic) and derive a regular expression using prompt
analysis module 410. As used herein, a “regular expression”
refers to all of the characters of the derived session prompt
that the prompt analysis module 410 has determined does not
change between session prompts. In an embodiment, the
prompt analysis module 410 may send carriage returns and
commands to the network device and record the responses.
The prompt analysis module 410 may compare the responses
to each carriage return and/or command. Based on the results
of the comparisons, the prompt analysis module 410 may
determine that the session prompt is a static prompt (the
change between carriage returns and between commands is
zero) or a dynamic prompt (there is some change between
prompts in response to commands and/or carriage returns).
The prompt analysis module 410 may then derive a regular
expression by determining what characters remain the same
in each session prompt.

The server 400 may construct an error handling dictionary
using error analysis module 412. In an embodiment, the error
analysis module 412 may operate after the prompt analysis
module 410 has completed operation, such as by deriving a
regular expression. The error analysis module 412 may send
one or more special characters that likely have no meaning to
the network device, in order to elicit one or more error
responses from the network device. The error analysis mod-
ule 412 may record the error responses and construct an error
handling dictionary, such as in a database. The error handling
dictionary may then be referenced when sending desired
commands to the network device to better understand the
network device’s behavior, such as to assist in determining
whether the data returning from the network device is likely
meaningful data or not, or whether the command executed
successfully or not.

An exemplary embodiment of server 400 will be discussed
in further detail below with respect to FIG. 11. As will be
recognized by those skilled in the relevant art(s), the different
functions of server 400 depicted in FIG. 4 may be performed
within the server 400, or alternatively may be performed by a
plurality of different servers or other types of computing
devices operating in cooperation within a geographic vicinity
of each other or at geographically different locations.

FIG. 5 illustrates an exemplary network management ses-
sion 500 between a server 502 and a network device 504
according to an embodiment. Server 502 may be an example
of computing device 102 in FIG. 1 or server 400 in FIG. 4, and
network device 504 may be an example of one or more of
nodes 104-110 of FIG. 1. Although the following references
to a single network device 504 for simplicity of discussion, it
will be understood that the server 502 similarly may access
multiple network devices, such as nodes 104-110 discussed
above with respect to FIG. 1, which may represent any num-
ber of network devices ranging from a few to thousands or
more.

The server 502 establishes a connection 506 with the net-
work device 504 to begin a session. In an embodiment, the
connection may be a TELNET or a secure shell (SSH) con-
nection, to name just a few examples. In an embodiment, the
server 502 may use context sensitive awareness in order to
discover and store the proper access protocol for the network
device 504.

5

10

15

20

25

30

35

40

45

50

55

60

65

6

After establishing connection 506, the server 502 performs
authentication 508 with network device 504. In an embodi-
ment, this includes entering a user name and password, for
example as shown in the CLI 202 or CLI 302 of FIGS. 2 and
3. In a further embodiment, authentication 508 may also
include an enable password phase, such as where the network
device 504 requires it.

After logging into the network device 504, the server 502
performs unknown session prompt determination 510. In an
embodiment, this may be performed by the prompt analysis
module 410 introduced above. Exemplary methods for per-
forming prompt analysis will be discussed in more detail with
respect to subsequent figures below.

Once the unknown session prompt has been determined
and a regular expression derived, the server 502 performs
unknown error handling determination 512. In an embodi-
ment, this may be performed by the error analysis module 412
discussed above. Exemplary methods for error analysis will
be discussed in more detail below.

After the unknown session prompt has been determined
and error handling expressions have been recorded, for
example in an error handling dictionary, the server 502 may
send commands 514 to the network device 504 to collect data
from the network device 504. In an embodiment, the com-
mands pertain to data that a network administrator has
requested. The server 502 may, upon receiving the data in
response to the commands 514, compare the received data to
one or more error messages stored in the error handling dic-
tionary previously constructed and filter out any data that
matches error messages in the dictionary.

Once the commands have been sent and the data collected,
the server 502 may send a disconnect command 516 and end
the session 500.

FIG. 6 illustrates an exemplary command prompt flow 600
according to an embodiment. The flow 600 begins with
device collection 602, such as the establishing of a connection
506 discussed above with respect to FIG. 5.

The flow 600 proceeds to authentication flow 604, such as
discussed above with respect to authentication 508 in FIG. 5.
The authentication flow 604 may include a prompt for a
username sent from the network device 504 to the server 502,
for example in a CLI. The server 502 may return a user name
entered in the CLI to the network device 504. The network
device 504 may then prompt the server 502 via the CLI for a
password corresponding to the user name previously entered.
The server 502 may then send the requested password to the
network device 504.

Once the server 502 has been authenticated by the authen-
tication flow 604, the network device 504 returns a state
which appears to the server 502 as an unknown status 606. At
this point, a human user would be able to recognize that
authentication has completed and that the device is ready for
input is by visually perceiving a prompt and verifying what it
looks like. Previous software attempts have looked for pre-
defined or reserved words or characters, such as the word
password or the characters # or >, to help in determining the
state. Without a user looking at a comand prompt window,
there is no way to know that the network device 504 is ready
for commands to be sent. Also, where the network device type
is unknown, previous software attempts have had no way of
determining the session prompt because there have not been
any reserved words or characters representing a proper
prompt construction for the unknown network device.

At this unknown status 606, the flow 600 proceeds to start
the process 608 of determining the session prompt and deriv-
ing a regular expression for the session prompt.

US 9,304,847 B2

7
Example Methods

FIG. 7 illustrates an exemplary process 700 for automatic
prompt detection according to an embodiment. Process 700
provides a high-level view of an exemplary embodiment
which will be discussed in more detail in subsequent figures.
Although the exemplary process 700 may be performed on
any number and type of computing devices, the following
figures will be described with respect to the server 400 of FIG.
4, by way of a nonlimiting example.

At step 702, the server 400 connects to the network device,
such as network device 504. In an embodiment, the server 400
connects to the network device 504 via the transceiver 404.

At step 704, the server 400 authenticates against the net-
work device 504 (otherwise referred to as logging in to the
networking device 504) to be able to communicate with and
manage the network device 504, for example as discussed
above with respect to FIGS. 5 and 6.

After the server 400 has logged in to the networking device
504, the server 400 measures a round trip time (RTT) for a
packet between the server 400 and the networking device 504
at step 706. In an embodiment, this may take the form of a
ping packet sent from the server 400. The ping packet may be
set to have the largest payload possible in order to simulate a
worst-case scenario of large data responses to commands sent
to the network device later during a session.

Once the server 400 has collected the measured RTT, the
server 400 may use the RTT, or a multiple of'it, as a dynamic
timeout period. After sending a command, the server 400
waits for the timeout period for a response from the network
device 504. In an embodiment, the server 400 may have an
arbitrary amount set as the timeout period, for example 60
seconds. This may unnecessarily prolong a waiting period,
however. By dynamically adjusting the timeout period based
on the RTT, embodiments of the present disclosure may sig-
nificantly reduce the amount of time used to wait for a
response from the network device 504, while still providing
sufficient time for a delayed response to arrive. This can be
evaluated and re-computed after each conversation so that the
RTT can reflect the current state of the network device 504.

For example, the server 400 may take the measured RTT
and set the timeout period as the RTT times a multiplier value,
such as a rational number or a whole number. The timeout
period may be set by a first communication session and used
in subsequent communication sessions, or alternatively may
be dynamically set at the start phase of each communication
session established by the server 400, for example after each
conversation.

Returning to process 700, at step 708 the server 400 deter-
mines the session prompt for the network device 504. This
may include recording the prompt after successful login, after
sending a carriage return, and after sending a specific char-
acter that likely has no meaning to the network device 504.
The server 400 may compare these different recorded
prompts against each other and, if there are differences
between any of the prompts, determine that the session
prompt is a dynamic prompt. If there are no differences
between any of the prompts, then the server 400 may deter-
mine that the session prompt is a static prompt. In an embodi-
ment, the server 400 waits for the timeout period determined
at step 706 after each carriage return and command is sent to
the network device 504.

At step 710, the server 400 determines error handling for
the network device 504. For example, the error analysis mod-
ule 412 may send one or more special characters that likely
have no meaning to the network device and record the error

10

15

20

25

30

35

40

45

50

55

60

65

8

responses. The error analysis module 412 may construct an
error handling dictionary based on the responses for use dur-
ing subsequent operations.

After step 710 is complete, the server 400 may send com-
mands to network device 504 and collect data responsive to
the commands from the network device 504. After all
requested commands have been sent and responses recorded,
the server 400 may end the process 700, for example by
disconnecting from the network device 504.

FIG. 8 illustrates an exemplary process 800 for determin-
ing a session prompt according to an embodiment. In an
embodiment, process 800 begins at the end of an authentica-
tion process, for example after the network device 504 returns
the unknown status 606 discussed above with respect to FIG.
6.

At step 802, the server 400 records the previous response,
for example the returned unknown status 606 of FIG. 6. In an
embodiment, the previous response is a first session prompt
206 of FIG. 2 (static prompt) or a first session prompt 306 of
FIG. 3 (dynamic prompt) that the network device 504 returns
to the CLI after successful authentication.

At step 804, the server 400, for example by way of the
prompt analysis module 410, sends a carriage return to the
network device 504 and records the response from the net-
work device 504. In an embodiment, the response is a second
session prompt 210 of FIG. 2 or second session prompt 308 of
FIG. 3.

At step 806, the prompt analysis module 410 sends a spe-
cial character that likely is not an actual command to the
network device 504, typically followed by a carriage return,
and records the response from the network device 504. In an
embodiment, the response includes an error message, such as
error message 208 of FIG. 2 or error message 310 of FIG. 3,
and another session prompt, such as third session prompt 312
of FIG. 3.

At step 808, the prompt analysis module 410 compares the
different recorded responses. In an embodiment, the prompt
analysis module 410 searches for any differences between the
different session prompts recorded.

At step 810, the prompt analysis module 410 takes the
results of the comparison and determines whether the session
prompt is a static prompt or a dynamic prompt. For example,
if the results of the comparisons indicate that there are no
differences in any characters of the recorded session prompts,
then the prompt analysis module 410 determines that the
session prompt is a static prompt. If the results of the com-
parisons indicates that there is a difference between any one
or more of the recorded session prompts, then the prompt
analysis module 410 determines that the session prompt is a
dynamic prompt.

At step 812, the prompt analysis module 410 derives a
regular expression based on the determined prompt type and
the characters included in the different responses previously
recorded from the network device 504. For example, for the
dynamic prompt 300, the derived regular expression would
be:

*CARY-EX-ACCO1:\d+#

Where “\d+” represents the value that changes in succes-
sive prompts after a command has been sent to the network
device 504. In the static prompt 200 example, the regular
expression would be:

US 9,304,847 B2

9

P1#

After deriving the regular expression, process 800 ends.

FIG. 9 illustrates an exemplary process 900 for determin-
ing a session prompt according to an embodiment. The pro-
cess 900 will be described with reference to the prompt analy-
sis module 410 of server 400.

The process 900 begins at the unknown state at step 902,
for example the unknown status 606 which the network
device 504 returns as discussed above with respect to FIG. 6.

At step 904, the prompt analysis module 410 records the
previous response, for example the returned unknown status
606 of FIG. 6. This may be the first session prompt 206 of
FIG. 2 or the first session prompt 306 of FIG. 3.

At step 906, the prompt analysis module 410 sends a car-
riage return to the network device 504 and records the
response from the network device 504, such as the second
session prompt 210 of FIG. 2 or second session prompt 308 of
FIG. 3.

At step 908, the prompt analysis module 410 compares the
recorded responses from steps 904 and 906 and determines if
there are any differences between them. For example, the
prompt analysis module 410 compares the first and second
session prompts recorded to determine whether there are any
differences between the characters appearing in each of the
recorded session prompts.

If'there is a difference between the recorded responses, the
process 900 proceeds to step 910. At step 910, the prompt
analysis module 410 sends a special character followed by a
carriage return to the network device 504 and records the
response, such as the third session prompt 312 of FIG. 3. Inan
embodiment, the special character is a character that is not
likely to be an actual command to the network device, for
example a period character. The process 900 may repeat step
910 one or more times so that a sequence of characters may be
sent by the prompt analysis module 410 and a plurality of
responses received and recorded. The number of times the
step 910 is repeated may be arbitrarily set beforehand, or may
be dynamically based on the vendor type of the network
device 504 when the vendor type is known.

At step 912, the prompt analysis module 410 determines
that the session prompt is a dynamic prompt because of one or
more differences existing between the recorded responses.

At step 914, the prompt analysis module 410 derives a
regular expression based on the determined prompt type and
the different responses previously recorded from the network
device 504. Some examples of a derived regular expression
are given above with respect to FIG. 8. In an embodiment,
after the dynamic prompt is determined the prompt analysis
module 410 compares the recorded responses to determine
what characters are different between the recorded session
prompts. In an embodiment, the prompt analysis module 410
analyzes the differences between the recorded responses
(e.g., the session prompts) from steps 904, 906, and 910 to
also determine any patterns between changing characters, for
example whether the changing character (or characters) is a
value that increments by some predetermined amount each
time. This may be repeated any number of times until prompt
analysis module 410 is satisfied that a pattern of change has
been detected. Alternatively, the prompt analysis module 410
does not analyze the pattern of change but rather focuses on
identifying the characters that do not change between session
prompts.

If at step 908 it is determined that there is no difference
between the recorded responses, the process 900 proceeds to
step 916. At step 916, the prompt analysis module 410 sends
a special character followed by a carriage return to the net-
work device 504 and records the response, such as the third

10

15

20

25

30

35

40

45

50

55

60

65

10

session prompt 312 of FIG. 3. In an embodiment, the special
character is a character that not likely to be an actual com-
mand to the network device, for example a period character.
The process 900 may repeat step 916 one or more times so
that a sequence of characters may be sent by the prompt
analysis module 410 and a plurality of responses received and
recorded. The number of times the step 916 is repeated may
be arbitrarily set beforehand, or may be dynamically based on
the vendor type of the network device 504 when the vendor
type is known.

At step 918, the prompt analysis module 410 compares the
recorded responses from steps 906 and 916 (or, alternatively,
steps 904, 906, and 916) and determines if there are any
differences between them. For example, the prompt analysis
module 410 compares the second and third session prompts
recorded to determine whether there are any differences
between the characters appearing in each of the recorded
session prompts.

If there is a difference between the recorded session
prompts, the process 900 proceeds to step 912, determines
that the session prompt is a dynamic prompt because of the
difference, and continues as discussed above with respect to
the dynamic prompt.

If there remains no difference at step 918 between the
second and third session prompts, then the process 900 pro-
ceeds to step 920.

At step 920, the prompt analysis module 410 determines
that the session prompt is a static prompt because of the lack
of any difference between any of the multiple recorded
responses.

The process 900 then proceeds to step 914 to derive a
regular expression for the static prompt, which will include
all of the characters recorded from the recorded responses.

FIG. 10 illustrates an exemplary process 1000 for error
handling according to an embodiment. In an embodiment, the
error analysis module 412 may perform the steps of process
1000.

At step 1002, the prompt analysis module 410 completes
determination of the prompt and derivation of the regular
expression, as discussed above with respect to FIGS. 8 and 9.

At step 1004, the error analysis module 412 sends a special
character, or a series of special characters, to the network
device 504 followed by a carriage return.

At step 1006, the error analysis module 412 saves the error
response that the network device 504 outputs. In an embodi-
ment, the error analysis module 412 may store the error
response in a memory, such as storage device 406, or some
other persistent storage, to construct an error handling dictio-
nary. In an embodiment, the error handling dictionary may be
implemented as a database.

The error analysis module 412 may perform steps 1004 and
1006 once, or may repeat the process any number of times in
order to elicit as many different error responses possible from
the network device 504. In this manner, the error analysis
module 412 may assist in determining how the network
device 504 behaves when the network device 504 encounters
commands that the network device 504 does not understand.

At step 1008, the process 1000 ends. With the construction
of'an error handling dictionary, the server 400 may reference
collected data from the network device 504 to one or more
entries in the error handling dictionary to assist in determin-
ing whether the responses are error messages or actual data.
Example Computer System

Computer system 1100 includes one or more processors,
such as processor 1104. Processor 1104 can be a special
purpose or a general purpose digital signal processor. Proces-
sor 1104 is connected to acommunication infrastructure 1102

US 9,304,847 B2

11

(for example, a bus or network). Various software implemen-
tations are described in terms of this exemplary computer
system. After reading this description, it will become appar-
ent to a person skilled in the relevant art(s) how to implement
the disclosure using other computer systems and/or computer
architectures.

Computer system 1100 also includes a main memory 1106,
preferably random access memory (RAM), and may also
include a secondary memory 1108. Secondary memory 1108
may include, for example, a hard disk drive 1110 and/or a
removable storage drive 1112, representing a floppy disk
drive, a magnetic tape drive, an optical disk drive, or the like.
Removable storage drive 1112 reads from and/or writes to a
removable storage unit 1116 in a well-known manner.
Removable storage unit 1116 represents a floppy disk, mag-
netic tape, optical disk, or the like, which is read by and
written to by removable storage drive 1112. As will be appre-
ciated by persons skilled in the relevant art(s), removable
storage unit 1116 includes a computer usable storage medium
having stored therein computer software and/or data.

In alternative implementations, secondary memory 1108
may include other similar means for allowing computer pro-
grams or other instructions to be loaded into computer system
1100. Such means may include, for example, a removable
storage unit 1118 and an interface 1114. Examples of such
means may include a program cartridge and cartridge inter-
face (such as that found in video game devices), a removable
memory chip (such as an EPROM, or PROM) and associated
socket, a thumb drive and USB port, and other removable
storage units 1118 and interfaces 1114 which allow software
and data to be transferred from removable storage unit 1118
to computer system 1100.

Computer system 1100 may also include a communica-
tions interface 1120. Communications interface 1120 allows
software and data to be transferred between computer system
1100 and external devices. Examples of communications
interface 1120 may include a modem, a network interface
(such as an Ethernet card), a communications port, a PCM-
CIA slot and card, etc. Software and data transferred via
communications interface 1120 are in the form of signals
which may be electronic, electromagnetic, optical, or other
signals capable of being received by communications inter-
face 1120. These signals are provided to communications
interface 1120 via a communications path 1122. Communi-
cations path 1122 carries signals and may be implemented
using wire or cable, fiber optics, a phone line, a cellular phone
link, an RF link and other communications channels.

As used herein, the terms “computer program medium”
and “computer readable medium” are used to generally refer
to tangible storage media such as removable storage units
1116 and 1118 or a hard disk installed in hard disk drive 1110.
These computer program products are means for providing
software to computer system 1100.

Computer programs (also called computer control logic)
are stored in main memory 1106 and/or secondary memory
1108. Computer programs may also be received via commu-
nications interface 1120. Such computer programs, when
executed, enable the computer system 1100 to implement the
present disclosure as discussed herein. In particular, the com-
puter programs, when executed, enable processor 1104 to
implement the processes of the present disclosure, such as
any of the methods described herein. Accordingly, such com-
puter programs represent controllers of the computer system
1100. Where the disclosure is implemented using software,
the software may be stored in a computer program product

10

15

20

25

30

35

40

45

50

55

60

65

12

and loaded into computer system 1100 using removable stor-
age drive 1112, interface 1114, or communications interface
1120.

In another embodiment, features of the disclosure are
implemented primarily in hardware using, for example, hard-
ware components such as application-specific integrated cir-
cuits (ASICs) and gate arrays. Implementation of a hardware
state machine so as to perform the functions described herein
will also be apparent to persons skilled in the relevant art(s).

CONCLUSION

Embodiments have been described above with the aid of
functional building blocks illustrating the implementation of
specified functions and relationships thereof The boundaries
of these functional building blocks have been arbitrarily
defined herein for the convenience of the description. Alter-
nate boundaries can be defined so long as the specified func-
tions and relationships thereof are appropriately performed.

The foregoing description of the specific embodiments will
so fully reveal the general nature of the disclosure that others
can, by applying knowledge within the skill of the art, readily
modify and/or adapt for various applications such specific
embodiments, without undue experimentation, without
departing from the general concept of the present disclosure.
Therefore, such adaptations and modifications are intended to
be within the meaning and range of equivalents of the dis-
closed embodiments, based on the teaching and guidance
presented herein. It is to be understood that the phraseology or
terminology herein is for the purpose of description and not of
limitation, such that the terminology or phraseology of the
present specification is to be interpreted by the skilled artisan
in light of the teachings and guidance.

The breadth and scope of embodiments of the present
disclosure should not be limited by any of the above-de-
scribed exemplary embodiments, but should be defined only
in accordance with the following claims and their equivalents.

What is claimed is:
1. A method for automatically detecting a prompt with a
network device, comprising:

recording, at a server, a first prompt response received from
the network device in response to logging in to the
network device;

sending a first command to the network device and record-
ing a second prompt response received from the network
device in response to the first command;

sending a second command to the network device and
recording a third prompt response received from the
network device in response to the second command;

comparing the first prompt response, the second prompt
response, and the third prompt response to each other;
and

determining the prompt to be a static prompt in response to
the comparing resulting in no differences between the
first, second, and third prompt responses and a dynamic
prompt in response to the comparing resulting in a dif-
ference between the first, second, and third prompt
responses.

2. The method of claim 1, further comprising:

determining a number of matching characters between the
first prompt response, the second prompt response, and
the third prompt response based on the comparing; and

deriving a regular expression based on the determined
prompt and the determined number of matching charac-
ters.

US 9,304,847 B2

13

3. The method of claim 1, wherein:
the first command comprises a carriage return; and
the second command comprises a character.
4. The method of claim 1, further comprising:
measuring a round trip time (RTT) for a timing command
between the server and the network device; and
assigning a time-out period for responses from the network
device as the RTT times a multiplier factor.
5. The method of claim 4, wherein the timing command
comprises a ping packet, the method further comprising:
setting the ping packet to a maximum allowable size to
simulate a worst case scenario for a response from the
network device.
6. The method of claim 1, further comprising:
sending a special character to the networking device to
elicit an error response from the networking device,
wherein the special character comprises a character pre-
dicted to have no known use for the networking device;
recording the error response from the networking device;
and
generating a custom error dictionary based on the recorded
error response.
7. The method of claim 6, further comprising:
sending a user-specified command to the networking
device;
receiving a specific response to the user-specified com-
mand from the networking device;
comparing the specific response to an entry in the custom
error dictionary; and
determining success or failure of execution of the user-
specified command based on a result of the comparing to
the entry in the custom error dictionary.
8. A server for automatically detecting a prompt with a
network device, comprising:
a transceiver configured to transmit and receive messages
to and from the network device;
a prompt analysis module configured to:
record a first prompt response received from the network
device in response to logging in to the network device;
send a first command to the network device and record a
second prompt response received from the network
device in response to the first command;
send a second command to the network device and
record a third prompt response received from the net-
work device in response to the second command;
compare the first prompt response, the second prompt
response, and the third prompt response to each other;
and
determine the prompt to be a static prompt in response to
the comparison resulting in no differences between
the first, second, and third prompt responses and a
dynamic prompt in response to the comparison result-
ing in a difference between the first, second, and third
prompt responses; and
aprocessor configured to execute the prompt analysis mod-
ule.
9. The server of claim 8, wherein:
the first command comprises a carriage return; and
the second command comprises a character.
10. The server of claim 8, wherein the prompt analysis
module is further configured to:
measure a round trip time (RTT) for a timing command
between the server and the network device; and
assign a time-out period for responses from the network
device as the RTT times a multiplier factor.

10

20

25

30

40

45

50

55

14

11. The server of claim 10, wherein:

the timing command comprises a ping packet to measure

the RTT; and

the ping packet is set to a maximum allowable size to

simulate a worst case scenario for a response from the
network device.

12. The server of claim 8, further comprising:

an error analysis module configured to:

send a special character to the networking device to elicit
an error response from the networking device,
wherein the special character comprises a character
predicted to have no known use for the networking
device;

record the error response from the networking device;
and

generate a custom error dictionary based on the recorded
error response;

wherein the processor is further configured to execute the

error analysis module.

13. The server of claim 12, wherein the error-analysis
module is further configured to:

send a user-specified command to the networking device;

receive a specific response to the user-specified command

from the networking device;

compare the specific response to an entry in the custom

error dictionary; and

determine success or failure of execution of the user-speci-

fied command based on a result of the comparison to the
entry in the custom error dictionary.

14. A non-transitory computer-readable storage medium
having control logic recorded thereon that, when executed by
a processor, causes the processor to perform a method for
detecting a prompt with a network device, the method com-
prising:

recording a first prompt response received from the net-

work device in response to logging in to the network
device;

sending a first command to the network device and record-

ing a second prompt response received from the network
device in response to the first command;
sending a second command to the network device and
recording a third prompt response received from the
network device in response to the second command;

comparing the first prompt response, the second prompt
response, and the third prompt response to each other;
and
determining the prompt to be a static prompt in response to
the comparing resulting in no differences between the
first, second, and third prompt responses and a dynamic
prompt in response to the comparing resulting in a dif-
ference between the first, second, and third prompt
responses.
15. The non-transitory computer-readable storage medium
of claim 14, further comprising:
determining a number of matching characters between the
first prompt response, the second prompt response, and
the third prompt response based on the comparing; and

deriving a regular expression based on the determined
prompt and the determined number of matching charac-
ters.

16. The non-transitory computer-readable storage medium
of claim 14, wherein:

the first command comprises a carriage return; and

the second command comprises a character.

17. The non-transitory computer-readable storage medium
of claim 14, further comprising:

US 9,304,847 B2

15

measuring a round trip time (RTT) for a timing command
between the server and the network device; and

assigning a time-out period for responses from the network
device as the RTT times a multiplier factor.

18. The non-transitory computer-readable storage medium
of claim 17, wherein the timing command comprises a ping
packet, the method further comprising:

setting the ping packet to a maximum size to simulate a

worst case scenario for a response from the network
device.
19. The non-transitory computer-readable storage medium
of claim 14, further comprising:
sending a special character to the networking device to
elicit an error response from the networking device,
wherein the special character comprises a character pre-
dicted to have no known use for the networking device;

recording the error response from the networking device;
and

generating a custom error dictionary based on the recorded

error response.

20. The non-transitory computer-readable storage medium
of claim 19, further comprising:

sending a user-specified command to the networking

device;

receiving a specific response to the user-specified com-

mand from the networking device;

comparing the specific response to an entry in the custom

error dictionary; and

determining success or failure of execution of the user-

specified command based on a result of the comparing to
the entry in the custom error dictionary.

#* #* #* #* #*

10

15

20

25

30

16

